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Entropy-driven phase separation in mixtures of small colloidal particles and semidilute polymers
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~Received 17 January 1997; revised manuscript received 25 June 1997!

We study mixtures of polymer solutions with particles whose diameter is much smaller than the radius of
gyration of the polymer. They are found to demix when the polymer is semidilute and its correlation length is
approximately equal to the particle’s diameter. Protein purification using polymer solutions is shown not to be
possible without attractive polymer-protein interactions.@S1063-651X~97!13610-8#

PACS number~s!: 82.70.Dd, 64.75.1g
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I. INTRODUCTION

Polymers are mixed with suspensions of colloidal p
ticles because the mixture possesses desirable propertie
the pure suspension does not, for example, the required
gree of viscosity@1,2#. The resulting solution is a mixture o
small compact particles, usually roughly spherical, and po
mer chains. These polymer chains are, of course, not c
pact; each chain is spread over a large volume, only a s
fraction of which is actually occupied by its segments@3#.
The two components of the mixed solution are very differ
and so the interaction between them is very different fr
the colloid-colloid and polymer-polymer interactions@4–6#.
When the particles are, for example, protein molecules t
are typically small in relation to the polymer i.e., they have
diameter much smaller than the radius of gyration of
polymer. Here we derive a simple theory that qualitative
describes the small-particle-polymer mixtures and use thi
calculate their phase behavior. We find that the mixture
mixes into a particle-rich phase and a polymer-rich ph
and that it does so at a volume fraction of particles tha
universal and a volume fraction of polymer that varies
D24/3, for D the diameter of the particle.

The colloidal particles may be protein molecules@7,8#,
surfactant micelles@9,10#, or synthetic, polymer, or silica
spheres@2#. Both protein molecules and micelles typical
have diameters of around 5 nm. The polymer is considere
be in a good solvent and is therefore swollen in dilute so
tion due to self-interactions@3#. All interactions are assume
to be excluded volume interactions, that is, two polymer s
ments may not occupy the same volume and likewise for
particles or a particle and a polymer segment. This is reas
able if the solvent is good for the polymer, and the polym
does not absorb onto the particle. The energy of mixing
zero and so demixing can only occur if the entropy of mixi
is offset by a decrease in entropy caused by the poly
reducing the particle’s translational entropy and the partic
reducing the polymer’s configurational entropy.

The opposite case to that considered here, when the
ticle’s diameter is larger than the radius of gyration of t
polymer, has been considered extensively, both by exp
ment @1# and by theory@1,11#. In this case the particles ar
usually synthetic colloidal spheres.
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II. PHASE BEHAVIOR

When the polymer concentration is low enough that
polymer coils do not overlap, the dilute regime, the intera
tion between a particle and a much larger polymer coil,
weak @4,12,13#. The particle freely penetrates the polym
coils because these coils are mostly solvent, the actual
sity of polymer segments inside the polymer coil is very lo
If a particle is introduced into a coil the probability of
interacting with the polymer is only (D/RG)4/3!1 @4,12#,
whereRG is the radius of gyration of the polymer~this result
is derived below!. So, when the polymer is dilute, the poly
mer and particles are miscible. The situation is different
higher polymer densities when the coils overlap, the sem
lute regime@3#. We will show that there the mixture de
mixes.

All three interactions are excluded volume and theref
there are no energy scales, apart from the temperaturT.
There remain only length scales and the phase behavior
only depend on ratios of the length scales of the polyme
those of the particles. Obviously, the only length scale of
particles is their diameterD. In a pure semidilute polyme
solution there is again only one relevant length scale,
correlation lengthj @3#, which is roughly the distance be
tween interactions between segments on different poly
chains.j is given by j5afK

23/4, wherea is the segment
length andfK is the volume fraction of polymer segment
The radius of gyration is not a relevant length scale as i
much larger thanj and the chain loses its correlations a
‘‘forgets’’ which polymer it belongs to over a distance ofj.
A sphere of diameterD@a interacts not with each polyme
segment individually but with a piece of polymer chain
sizeD @4#. WhenD@a, the piece of a polymer coil of size
D is sufficiently large that it behaves as a small polymer c
and thena is irrelevant just as for any other polymer co
@3,4,13#. The mixture then has only two relevant leng
scales,D andj, these are shown in Fig. 1. This means th
the particle-polymer interaction, and hence whether or
the mixture demixes, depends only on their ratioD/j.

The free energy per unit volume of a semidilute polym
solution scales withj as;T/j3 @3#, essentially the density o
intrachain interactions. The free energy of colloidal partic
modeled as hard spheres is well described by a virial se
@14#. However, in a mixture of the spherical particles and t
polymer there are particle-polymer interactions that
qualitatively different from either the polymer-polymer o
4463 © 1997 The American Physical Society
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4464 56RICHARD P. SEAR
particle-particle interactions; their contribution to the free e
ergy must be estimated in order to determine the phase
havior of the mixture.

In the limits D!j andD@j, the particle-polymer inter-
action is straightforward. WhenD!j we scale the polyme
segment length froma to D. Then if ND is the number of
these segments of sizeD in a piece of polymer of lengthj, j
is related toND by j5DND

3/5; on length scales smaller tha
j the polymer is swollen. These segments are spread ov
volume ofj3 but only exclude a particle of diameterD from
a volume of orderNDD3; now that the segments are of th
same size as the particle we can consider them as intera
independently with the particle. UsingND5(j/D)5/3, the
fraction of volume denied by the polymer to particle is th
(D/j)4/3. The work donew ~5the difference in exces
chemical potential! in taking a particle from a pure solven
and inserting it into the polymer solution is just given by t
expression of Widom@13,15#:

w

T
;2 lnF12S D

j D 4/3G;S D

j D 4/3

, D!j, ~1!

where the logarithm is of the fraction of volume available
the particle. Note that by replacingj by RG we obtain the
equation quoted earlier for the particle-polymer interact
when the polymer is dilute. The notation ‘‘;’’ indicates that
we are neglecting~unknown! coefficients of order unity; here
we derive only the scaling behavior of the interactions w
respect to the relevant length scales. WhenD@j, the work
done in inserting the particle is just that done in clearing
polymer solution from a volume ofD3, i.e., PD3, whereP
is the osmotic pressure of the polymer solution. The osm
pressure of a polymer solution is related toj by P/T5j23,
so

w

T
;S D

j D 3

, D@j. ~2!

Although Eqs.~1! and~2! have been derived in the two lim
its of D much larger or much smaller thanj, they do agree
that for D;j, w;T @5#. This result must be correct as he
the only relevant dimensionless parameterD/j is unity. We
approximate the work done in inserting a particle of arbitra
diameterD@a by the sum of Eqs.~1! and ~2!.

Straightaway we can derive an approximation for the p
titioning of small spheres between a pure solvent phase a
semidilute solution; the two phases separated by a memb

FIG. 1. A schematic picture of a small colloidal sphere, a m
celle, or a protein molecule, in a semidilute polymer solution.
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permeable to the spheres but not the polymer, at least on
time scale of the experiment. The ratio of the density of
spheres in the pure solvent to that in a semidilute polym
solution is simply exp(w/T), which is

;expF S D

j D 4/3

1S D

j D 3G . ~3!

We now construct a simple approximate free energyA by
adding together the free energy of a pure semidilute polym
solution, the free energy of a pure fluid of hard spheres,
the work done in inserting the particles into the polym
solution. It is

A

T
5NKfK

5/41NS@ ln~fS!21#1NSfS1NSfS
2

1NSF S D

j D 4/3

1S D

j D 3G , ~4!

whereNK , NS , andV are the number of polymer segment
the number of particles, and the volume, respectively. T
volume fractions of polymerfK and of the particlesfS are
given byfK5NKa3/V andfS5NSD3/V. The second, third,
and fourth terms are the ideal and second and third vi
coefficient terms of a fluid of hard spheres. The numeri
coefficients of the virial terms are omitted along with th
higher order virial coefficients as our theory is purely qua
tative. The third virial term could, of course, be neglected b
as the particle densities are not very low it does have a
nificant effect and the cost in complexity of including it
very low. The assumptions underlying Eq.~4! are those un-
derlying the theory of the pure components@3,14# plus the
assumption that the free energy change in addingNS par-
ticles is justNS times the free energy of adding one: a lo
fS approximation.

The phase diagram for a mixture withD/a510 is shown
in Fig. 2~a!; the two-phase region where the particles a
polymer demixes is clear. The behavior at the level of
individual particles and polymer molecules that is driving t
phase separation could hardly be simpler. As the concen
tion of the polymer increases the correlation lengthj and
hence the space available for the particles decreases
whenD;j inserting a particle requires of orderT free en-
ergy to push the polymer out of the way. Then the free
ergy cost of the particle-polymer interaction is of the sa
order as the ideal free energy of mixing the spheres
polymer, and this ideal free energy is no longer enough
keep the mixture miscible. This free energy cost is the l
term of the Eq.~4!, it is this term that is large and positive i
mixtures whenD/j is large and so it drives phase separatio
At the critical point, thenD;j5afK

23/4 and the polymer
volume fraction at the critical point is;(a/D)4/3. The cal-
culations made with the free energy~4! give D/j.1.5 at the
critical point so at the critical pointfK is about twice this
value. Although the phase diagram in thefS-fK plane
changes when the ratioD/a is changed, there is essential
only one generic phase diagram. This can be seen if
phase diagram is plotted withD/j replacingfK @see Fig.
2~b!#; then the diagram is the same for all values ofD/a.
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The only effect of changingD/a is to scale the polyme
volume fractions at which the mixture phase separates.

Comparison with experiment is not easy as our sca
theory is only qualitative and its predictive value lies main
in predicting trends in miscibility when the size of either t
particle or the polymer is varied@3#. Experiments in which
these have been systematically varied have not, to the
thor’s knowledge, been performed. The theory qualitativ
agrees with experiments performed on polymer-micelle m
tures@9,10,16#, and it correctly predicts that the particle-ric
phase has a higher density of particles and polymer
therefore a lower solvent~water! density. The experiments o
Ref. @16# do, however, seem to indicate quite strong pa
tioning of polymer between the coexisting phases wher
the partitioning in Fig. 2 is quite weak. This may be due
inadequacies of the theory but it may also be due to inte
tions not taken account of by our simple model, for examp
water may not be a very good solvent for either the polym
or the micelles.

III. PROTEIN –ATHERMAL POLYMER MIXTURES

Mixtures of dilute and semidilute polymers and spheri
or quasispherical protein molecules have also been stu
@7,17,18#, due to their use in protein purification. Partitionin
of protein molecules between two phase separated~aqueous!
polymer solutions is used to purify proteins without destro
ing the native conformation of the protein. The protein m
ecules@7,17,18# are roughly spherical and show little or n
attractive interaction towards each other. As semidilute po
mer solutions of large polymer molecules have a very l

FIG. 2. Phase diagrams for a mixture of small colloidal partic
and polymer.~a! is the phase diagram in thefK-fS plane for
D/a510 and,~b! is the generic phase diagram in theD/j-fS plane.
The thick curves separate the coexistence and single phase re
and the dashed lines are tie lines. At high densities hard sph
freeze to form a solid phase and so fluid-fluid coexistence sh
will terminate at a triple point. Beyond this triple point there will b
only fluid-solid coexistence.
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volume fraction of polymer the solution can be mostly sali
solution and so this provides an environment in which
native comformation of the protein is maintained.

The two coexisting polymer solutions are the result o
binary mixture of polymers phase separating to form t
almost pure phases@3,7#. The two coexisting polymer solu
tions are each nearly pure and, of course, must be at the s
osmotic pressure. But they are at the same osmotic pres
and are~almost! pure, so the correlation lengthj in each
phase is~almost! the same if they are both semidilute
Hence, the density of the protein will be almost the same
both phases, if all interactions are athermal. The ratio of
protein densities in the two phases when the the protein d
sity is low ~which it is under experimental conditions! is
given by the ratio of Eq.~3! in the two phases. Asj is almost
the same in both phases the ratio is near to 1. Thus partit
ing of protein molecules between coexisting semidilute po
mer solutions requires attractive polymer-protein inter
tions; one of the polymers must adsorb onto the surface
the protein in order to achieve partitioning. This does n
seem to be fully appreciated@7,17#. If one of the coexisting
polymers adsorbs onto the protein and the other does not
partitioning of the protein may be calculated from the fr
energy of this adsorption. The ratio of the density of t
protein in the phase of the adsorbing polymer to the den
in the phase of the nonadsorbing polymer is;exp(Fa /T),
whereFa is the free energy change when the polymer a
sorbs onto a protein molecule. To be more specific, it is
excess free energy of a polymer plus a protein molecule m
ture with the attractive interactions minus the excess f
energy of the mixture with the attractive interactions ‘‘turn
off,’’ leaving only excluded volume interactions.Fa could be
estimated using, for example, the appraoch of Alexan
@19#. The simple form of the expression for the ratio of de
sities is due to the cancellation of the contributions of t
excluded volume parts of the interaction.

If the polymers are dilute, not semidilute, and the rad
of gyration of the polymer is still larger than the diameter
the protein molecules (.5 nm) then the polymer-protein in
teraction is weak; it is given by Eq.~1! with j replaced by
the polymer’s radius of gyration. So, protein partitionin
driven by excluded volume interactions is not possible at
for polymers larger than the protein. For polymers with ra
of gyration less than the diameter of the protein@11#, ex-
cluded volume~entropy! driven partitioning may be possibl
in dilute solution but polymers that are highly immiscible
dilute solution are required.

IV. CONCLUSION

Small colloidal spheres and larger polymers are misci
when the polymer is dilute but demix when the polymer
semidilute and its correlation lengthj is of the same order a
the diameterD of the colloid. The demixing is entropy
driven. We predict that the volume fraction of particles at t
demixing critical point is a constant independent of the s
of the particle, or of the nature or size of the polymer, as lo
as the polymer’s radius of gyration is much larger than
particle’s diameter and there are no attractive interactio
Also, protein partitioning between semidilute polymer so
tions has been shown to require attractive interactions.
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